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Sound synthesis involves creating a desired sound using software or algorithms and analysing the digital signal 
processing involved in the creation of the sound, rather than recording it. However, synthesis techniques are often too 
computationally complex for use in many scenarios. This project aims to implement and assess sound synthesis models 
with dynamic Level of Audio Detail (LOAD). The manipulations consist of modifying existing models to achieve a 
more or less complex implementation while still retaining the perceptual characteristics of the sound. The models 
implemented consist of sine waves, noise sources and filters that reproduce the desired sound, which could then be 
enhanced or reduced to provide dynamic LOAD. These different levels were then analysed in the time-frequency 
domain, and computational time and floating point operations were assessed as a function of the LOAD. 

INTRODUCTION 

Sound synthesis involves creating a desired sound using 
software or algorithms, rather than recording it. One of 
the most common and important applications is game 
audio, where synthesized sounds take up less memory 
than samples, are far less repetitive, and can be 
manipulated in far more creative ways. 
Traditionally, game audio has been performed using 
samples of pre-recorded sounds. Early game consoles 
and personal computers had synthesiser chips that 
produced sound effects and music in real-time. 
However, as sample technology matured it overtook 
real-time synthesis because of its perceived realism [1]. 
While sample-based data requires most of the work and 
decisions to be done in advance, prior to execution, real-
time sound synthesis is highly dynamic and flexible and 
many decisions are postponed until runtime. Unlike 
sampled sound, synthesised sound (and more generally, 
procedural audio as opposed to data driven audio) has a 
variable cost; the more complex the sound, the more 
work it requires.  
 A variable cost approach is well-established in 
rendering computer graphics, especially in games. Level 
of Detail (LOD) refers to the complexity of the 
rendering of an object or scene. Frame rendering time 
and memory utilization are improved in interactive 
visualization using simpler representations of an object 
[2]. Dynamic Level of Detail refers to the fact that the 
detail in the rendering can change based on how close a 
character is to whatever is being rendered.  
In an early work [3], Clark discussed different 
approaches to reduce computation cost when rendering 
a scene and proposed an object hierarchy to represent a 

scene in different levels of detail. He took into 
consideration parameters such as how much space on 
the screen the object occupies, the field of view of the 
scene and whether or not the object or the viewer is 
moving.  
We are concerned with investigating, implementing and 
testing an approach to dynamic Level of Audio Detail 
(LOAD). That is, synthesizing a sound such that we can 
choose how accurate and complex the synthesis is. By 
providing a variable level of detail, a complex sound 
scene can be synthesised with much less computation 
and storage than would be required to deliver, process 
and render a large number of samples. 
Previous work approached the application of level of 
audio detail by reducing computation in sample-based 
spatialized rendering of sounds [4, 5] and using corpus-
based granular synthesis [6]. 
Tsingos et al [4] proposed a pipeline composed of four 
steps for each time frame of audio processing. Firstly, 
all sound sources are sorted based on their binaural 
loudness. Perceptually inaudible sources that would be 
masked by the combination of other sources are then 
culled from the mix. A similar technique has been 
proposed for multitrack audio production [7, 8]. In step 
two, these remaining sources are then grouped into a 
predetermined number of clusters and a representative 
point source is created for each non-empty cluster. In 
step three, an equivalent sound signal is generated for 
each cluster and for each source, a number of operations 
is applied to the audio data. Finally, the pre-mixed 
signals and their representative point locations are used 
to feed audio rendering hardware or be rendered in 
software. The main limitation to this method is that it 



Durr, et al Implementation and evaluation of dynamic LOAD 

AES 56th International Conference, London, UK, 2015 February 11–13  2

performs well for a few hundred sound sources, but 
cannot be scaled easily to the thousands. 
In [5], Fouad et al propose that the real-time generation 
of the sound environment respects a predetermined 
computation time budget using buffers. They use three 
factors (the listener’s gaze, the intensity of the sound 
and the age of the sound) to prioritize the sound. The 
higher the priority the more detailed the sound will be. 
Once the buffers are filled the remaining samples that 
are missing are found through interpolation.  
Schwarz et al [6] proposed three levels of detail for a 
scene, similar to our approach. However, their approach 
seeks to bring sound and image together, making it 
respond visually and sonically to a common stimulus 
instead of triggering a sound effect from a visual event 
or vice-versa, while our focus is only on synthesising 
the sounds.  
The paper is organised as follows. Section 1 provides an 
analysis of sound synthesis engines and their 
effectiveness in applying LOAD. Section 2 presents 
how LOAD was applied to the chosen models. In 
Section 3, we analyse the results of sound synthesis with 
different models and different levels of LOAD. Section 
4 describes a listening test that compared the perceived 
realism of the models with varying LOAD against each 
other and against recorded samples. Finally, Section 4 
provides conclusions and a critical analysis, as well as 
discussion of future research directions. 

1 ANALYSIS 

Using [1] as a guideline, we aim to reconstruct and 
modify existing sound models to incorporate LOAD. 
Models described in [1] have been enhanced or 
extended previously by [9], [10] and [11], but to the best 
of our knowledge, not for the purpose of providing 
dynamic LOAD. The goal here is to have models close 
enough to the original sound so that they still sound like 
the effect being recreated but with less computation 
required, and to analyze how complex it would be to 
design an even more realistic model. 
The models are studied regarding their components, 
such as oscillating waves, filters and operations. Our 
approach involves modifying frequencies, gains and 
even incorporating new blocks of codes leading to a 
better quality of sound as well as withdrawing some 
parts to keep it realistic but less complex. 
Table 1 summarizes the elements of each model in [1], 
in order to categorize them in terms of the ease, 
appropriateness and effectiveness of applying LOAD. 
Not shown are those models that produce exactly the 
sound to be modified (pedestrian crossing, phone tone, 
DTMF tone, alarm…), where LOAD would most likely 
not be applicable. This table was created so we could 
analyze objectively the aspects of the models to 
critically choose the best ones to work with. The criteria 

of the choice was how difficult it would be to 
implement LOAD and how satisfying the outcome 
would be if we did. 

2 IMPLEMENTATION 

2.1 Model implementation 

Based on the complexity of the models in Table 1, and 
the potential effectiveness and ease of implementing 
LOAD, three models were chosen for investigation: fire, 
bubbles, and wind. Fire was implemented using 
Simulink, a block diagram and model-based design tool 
for Matlab, chosen because of its simplicity and broad 
functionality. Also, performance tests such as 
computational time, spectrogram visualisations, number 
of operations and memory usage are easy to implement 
with Matlab. Bubble and wind models were 
implemented using PureData, an open source visual, 
block-based programming language mainly used for 
processing and generate sounds. It was chosen for these 
models because it allowed direct extension and 
adaptation of the code provided in [1]. 
Fire is a complex sound composed of many features. 
The synthesis model is mostly white noise filtered to 
achieve the right frequency levels. It is created after the 
sum of three different sounds: lapping, crackling and 
hissing. Although the sound of fire has more elements, 
these represent the dominant components. Hence, its 
implementation is made by generating all these features 
separately and then adding them together. 
For bubbles, we considered bubbles rising from 
underwater until it reaches the surface where they pop 
and ring. The pitch of the bubble sound depends on its 
size; the larger the bubble the lower the sound. The 
model is based on two different elements, each one with 
a different envelope, pitch and amplitude of the bubbles. 
They depend on the size and quantities of bubbles. Also, 
different tones are used at the same time for the pitch as 
there are many different bubbles flowing. 
Like the fire model, wind is composed of a series of 
features, such as a whistle, a howl, leaves moving, etc. 
To emulate this, we used noise and filters that generated 
pseudo-chaotic signals. Echo should appear since the 
direction of the wind depends on the obstacles. Also the 
air velocity should vary and that was obtained with low-
frequency noise. The band-pass filters were responsible 
for providing the "whistle" while the wind through the 
leaves was obtained clipping sinusoidal waves. 
 
2.2 Applying Level of Audio Detail 

Each of the models has its own implementation and 
each generated sound has its own characteristics. So a 
different approach to applying LOAD was implemented 
for each model. 



Table 1: Sound synthesis models from [1], their implementation, how LOAD might be applied, and the effect of applying LOAD. 
 

Model Implementation How to Apply LOAD? Effect of LOAD 

Police 2 oscillators + clipping + band 
pass filter 

Adding filter to simulate distortions of 
diaphragm, delay to simulate buildings 

Computation becomes more complex 

Telephone 
Bell 

Few oscillators Increasing or decreasing number of 
harmonics 

  

Fire Combination of filtered white 
noise 

Adding more or less effects, besides 
changing aspects of each effect 

With each effect added more computation 
required to generate the sound 

Bubbles Sine wave generator + envelope 
generator 

Changing some constants; adding the 
same model with different frequencies 

Just changing a small detail 

Running 
Water 

Noise modulation (AM & FM) Increasing or decreasing the number of 
rising sine waves and/or changing the 
parameters than it can sound like a 
harder or a softer flow 

It could change the quality of the sound & 
switch between different kinds of running 
water 

Pouring “Bubbles” + “Running water” + 
Band pass filters (resonance) 

Adding more variation in bubble sounds 
through adjustable number of filters 

More computation because of the filters 

Rain Waveshaping noise into 
parabolic pulses 

Change places drops fall; add coloured 
noise; change frequencies, resonance, 
threshold & amplitude; add sound of 
running water & wind; fade unused 
scenes as rain continues 

More computation due to the different 
environments 

Electricity Mix of oscillators at close 
frequencies modulating a chirp 
impulse + short time comb filters 
+ short impulses, noise & 
resonant bank filter 

By adding LOAD to the different 
aspects that forms the sound, like 
adding noise, filtering & modulation. 

  

Thunder Noise sources + delays + 
waveshaping + delay-based 
echo/reverb 

Reducing echo component of sound, do 
not use polyphonic strike sound 
generator as it can only be heard in 
small distances from the thunder 

Without echo, thunder would be less 
realistic but it would reduce CPU 
processing. Without polyphonic strike 
generator thunder would not sound perfect 
at short distances 

Wind Noise & filters (Low-frequency 
noise + amplitude-modulated 
wideband noise + narrow band 
pass filters) 

Not using the subtle amplitude & 
frequency modulation/ Not delaying the 
excitations/Not use tree leaves sound 

Without amplitude & frequency modulation 
wind would have less realisticm whistling. 
Without delay in excitations, stereo image 
would not be so realistic. Tree leaves sound 
not as good as described, so removing it is 
not a problem. Sound elements present in 
wind vary with ambience. 

Switches Parallel band pass filters + short 
delays + noise-like sources 

Add some body resonance; Build more 
abstractions to change the type of the 
switch 

More computation due to different switches

Clocks Controlled  “switches” Adding more complexity to the control 
code, simulating a big or small clock 
body by adding delay & filtering. 

More computation due to a more complex 
control code 

Motors Envelope generator + modulated 
noise source + raised cosine 
waveform 

We could remove the noisy clicks, in 
this case we would not use a modulated 
noise source, decreasing CPU 
processing. 

The motor sound would be less realistic but 
only when heard closely, the clicks can't be 
heard in a greater distance. 

Cars Phase splitting + wrapping + 
delays + filters (+ timewarp the 
waveguide + small noise) 

Add inertia; Add timing & pulse width 
jitter; Define a set of different 
overtones; Set the controls differently 

More computation when adding different 
controls & inertia 

Fans Noise source modulated with a 
narrow pulse + mildly resonant 

Add a parameter to alter the mix of 
pulse, noise & Doppler shift, depending 

Different sounds depending on observer's 
angle as well as produce other static 
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band pass filter on the observer's angle. machinery sounds. 

Jet Engine 5 oscillators (partial additive 
synthesis) + cascade of filters & 
nonlinear functions (noise 
source) 

Varying control input of filter for flame. 
Adding more or less sinusoids to 
simulate the turbine. Varying the 
control input to simulate speed. 

  

Helicopter Pulse generator &  waveguide 
(engine) + impulse generator, flat 
amplitude noise source & 
movable comb delay (main rotor) 
+ fixed pulse generator & band 
pass filter (tail rotor) + 3 sine 
oscillators (gearbox) + steep low 
pass filtered noise  (distance 
filter) 

Change the model related to the 
movement of the helice; Scale 
components differently; 

Simple changes since you just add the same 
codes again or change scales based on the 
model used. 

Footsteps 2 polynomial GRF curve 
generators + Noise filtered & 
clipped (+ envelope) 

Use less or not use synthesisers to 
produce mixture of grass, soil, gravel or 
any combination 

The transitions across changing terrains 
would not be too smooth. In the code it 
would be enough to remove some parts. 

Insects - Field cricket: synchronous AM 
(source – one phasor) 

Add context Computation will be needed, as the 
environment needs to be set 

 - Field cricket 2: pulse + high 
resonance band pass filters 

  

 - Cicada: filtered noise source 
modulated with pulse wave 

 
 

 

 

Birds Pulse waves + ring modulation 
for FM carrier + two parallel 
band pass filters 

Birds are really complex animals, to be 
more accurate it would require intricate 
parameterisation of the syntax model 

Really complex computation due to 
quantity of variables 

Mammals Pulse generators + 
cascade/parallel resonant band 
pass filters 

A vocal tract model is essentially a set 
of band-pass filters arranged to mimic 
the changing diameter of a long 
passage. Using less filters is a solution 
to change the level of audio detail. 

In the code it would be necessary to remove 
some blocks. The effect on the sound 
would be a lower quality 

Guns Short sine sweep (higher pitch) + 
short sweep at 100Hz + set of 
series band pass filters + short 
noise burst + envelope + 
distortion 

Controlling the shell chirp to vary the 
form of the impulse. Adding more 
aspects to the sound with more or less 
filtering. Distortion can be applied too. 
Changing control constants. 

More computational resources are needed if 
more aspects are added. 

Explosions chirp impulse + shaped noise + 
low-passed noise (+delays) 

Changing the offsets  Minor 

Rocket 
Launcher 

Narrow band pass filters (tube 
model) + comb-filtered noise 
(rocket) 

Unload empty tube behaves as a full 
wavelength resonator that generates a 
lot of harmonics. Using filters could 
reduce amount of harmonics. Another 
approach is to not use handling sounds. 

The sound would have no significant 
changes with the filters. Although 
removing handling sounds would slightly 
affect quality. is the code has enough detail 
to add or remove parts. 

Transporter Two-stage FM using triangle 
waves + delays + envelope + 
filter bank (10 parallel band pass 
filters) 

A simpler model can be made by adding 
less sounds 

Less computational resources will be 
required as the model becomes simpler 

R2D2 FM (or phase modulation) 
synthesis 

A simpler model can be made by adding 
less sounds 

Less computational resources will be 
required as the model becomes simpler 

Red Alert Sawtooth waveform + second 
harmonic + envelope + fixed 
delay-based resonators & sharp 
filters 

Adding more resonant factors & 
changing constants. 

The computational resources needed 
changes as the complex of the sound 
changes 
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For fire, all features were generated by filtering and 
modulating white noise. Hence, adding more or less 
filters to the feature models or changing the modulation 
parameters was used to obtain dynamic Level of Audio 
Detail (LOAD). The first approach significantly 
affected the computational time needed to produce the 
sound while the second one did not. Another way to 
implement LOAD is to sum together two or more fire 
sound sources, each one with all three features 
implemented, and filter them in order to get different 
resonant frequencies from each one. This improves 
realism but increases computational time. 
In the bubble model, the quantity of bubbles is 
determined by a random number within a given range. 
Our first approach to adding LOAD was to reduce or 
increase this range by a simple change of parameters. 
Our second approach was reducing the quantity of tones 
used for bubble pitches. The sound with the highest 
quality uses four different tones; in this case it has to 
process the same function four times. Using less tones 
slightly reduces the quality of the sound, but results in 
less functions running simultaneously.  
Since the wind sound is essentially different kinds of 
noise modulated by filters that alter the direction and 
velocity, to apply LOAD we added more noise 
modulated in different ways to compose the ambience. 
The noise wasn't randomly added; filters were applied 
that would specifically create different elements, like 
leaves moving, objects rolling etc. 

3 EVALUATION 

For each model, we applied three levels of LOAD, as 
explained in Section 2.2. In Figure 1, spectrograms are 
shown for low, medium and high LOAD fire sounds. 
We can see that the more quality the sound has, the 
denser the spectrogram. The small number of filters for 
low LOAD generates a sound with frequencies in 
almost every part of the spectrum. As more filters are 
added, certain frequency ranges become emphasised, 
until the high LOAD where it is possible to note the 
cleaner sound. 
Figure 2 depicts spectrograms of synthesised bubble 
sounds for low, medium and high LOAD, respectively. 
The spectrogram for the low level of audio detail has 
less frequency components than the one representing the 
sound with high level of detail. This occurs because the 
worst quality sound has fewer tones generators. The 
spectrogram for the midlevel LOAD should have the 
same amount of frequency components as low LOAD 
but it does not. This may have happened because the 
size of each bubble is randomly generated, thus 
influencing the frequency used. Also, bubbles are 
produced with random variations in timing, which may 
lead to the frequency content of bubbles adjacent in 
time appearing smeared, thus resulting in overlapping 
bubble tones in the spectrogram.  

 

 

 
Figure 1: Spectograms of fire sounds for low (top), medium 

(middle) and high (bottom) LOAD. 
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Figure 2: Spectograms of bubble sounds for low (top), 

medium (middle) and high (bottom) LOAD. 
 
In Figure 3, spectrograms are depicted for wind sounds 
with varying LOAD. We can see significant differences 
in the distribution of frequency content in each case. 
The differences exist because the noise distribution 
depends on LOAD. The higher quality sound has more 
noise since in that case, the wind sound is generated 
using a combination of noise sources and filters. 

 

 

 
Figure 3: Spectogram of wind sounds for low (top), medium 

(middle) and high (bottom) LOAD. 
 
For objective measurement of computational 
performance, the number of operations the program 
performed and the computational time required to run 
the code were determined. These tests were performed 
on the fire model, implemented in Matlab Simulink, 
because these quantities are more easily assessed in 
Matlab than in PureData. Figure 4 shows similar 
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behaviour for both computational time and number of 
operations. Both analyses are consistent with the 
expected results, and suggest that considerable savings 
can be achieved when low LOAD is used. 

 

 
Figure 4: Computational time (top) and number of operations 

(bottom) of the fire model for different levels of LOAD. 

4 LISTENING TEST 

A listening test was performed in order to evaluate if the 
sounds synthesized by our modules were realistic and 
how the different levels of LOAD would be perceived, 
or if they would be perceived at all.  
The test consisted of a multiple stimulus evaluation 
using the Audio Perceptual Evaluation toolbox for 
MATLAB [12]. Ten test subjects were chosen, and they 
each had to answer three multi-stimulus questions. Each 
question focused on one of the three sound types; fire, 
bubbles and wind. In each question, the test subject was 
asked to rate five audio samples in terms of how 
realistic they sounded. Three of the samples were 
created by our modules, which represented low, 
medium and high LOAD configurations. The other two 
samples were recordings of the actual sound. The 
interface is shown in Figure 5 and the results are plotted 
in Figure 6. 
As expected, the recorded samples had the best mean 
ratings in all cases, because our synthesis techniques did 
not cover the whole range of complexity of each sound.  
For fire sounds, low LOAD resulted in significantly 
lower perceived realism. Though high LOAD was not 
perceived to be more realistic than medium LOAD, both 
medium and high LOAD fire sounds were close in 
perceived realism to the first recorded sample. 

 

 

Figure 5: User interface for the multi-stimulus perceptual 
evaluation listening test. 
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Figure 6: Subjective ratings of fire (top), wind (middle) and 

bubble (bottom) sounds. 1- low LOAD, 2- medium LOAD, 3– 
high LOAD, 4– recorded sample 1, 5– recorded sample 2. The 

box represents the 25-75% interquartile region, black lines 
represent the range excluding outliers, and crosses represent 

outliers. 
 

Results were less conclusive for the other models, 
however. All results for wind sounds had large variance 
in ratings, resulting in an inability to distinguish 
performance. Only the first recorded wind sound had 
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noticeable better perceived realism than other samples, 
but the large range of ratings for this  sample implies 
that this result cannot be considered definitive. For the 
bubble sounds, the model does not generate sufficient 
complexity, and hence all synthesised samples were 
rated very low in comparison to the recorded samples. 
Hence, one cannot extract meaningful information 
regarding the perceived realism of the synthesised 
bubble sounds with varying LOAD. 

5 CONCLUSIONS 

In this work we sought to understand the mechanisms 
for creating a sound with variable Level of Audio 
Detail. We were able to create and manipulate three 
sound models, apply varying LOAD on each of them, 
and synthesise samples that in some cases have a level 
of perception close to reality.  
However, the results obtained in the listening test were 
not satisfying. The different Levels of Audio Detail 
were not ranked as expected. We suspect that this is due 
to the oversimplicity of the synthesis models and the 
challenging nature of performing an insightful listening 
test.  
For further work, LOAD should be implemented such 
that LOAD has a continuum of values, and high LOAD 
approaches the full level of realism of a recording of the 
actual sound. Thus subjective evaluation could compare 
the full spectrum from crude to highly realistic 
synthesis. This would also allow thorough investigation 
of how the dynamic aspects should be implemented 
without perceptual artifacts being introduced as LOAD 
changes. 
One further challenge with the approach presented in 
this paper was that each sound is synthesised using a 
unique approach. Thus the implementation of LOAD 
differs for each sound. An alternative would be to 
explore how LOAD can be applied in a consistent 
manner to a very general synthesis technique. For 
example, if sounds are synthesised using an example 
recording as a template, then a sinusoids plus noise 
model might be applied, and LOAD can be directly 
linked to the number of sinusoids in the synthesis, 
regardless of the sound source. 
In this paper, the subjective evaluation was only in the 
form of comparison between the proposed models and 
recorded samples. Better benchmarking, and more 
accurate assessment of the state of the art, would be 
achieved by including other synthesis techniques from 
the literature for comparison. Only then would it 
become clear how different approaches to sound 
synthesis, with or without LOAD, compare to each 
other. 
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