
Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 1

IMPLEMENTATION AND EVALUATION OF DYNAMIC LEVEL OF AUDIO
DETAIL

GABRIEL DURR1, LYS PEIXOTO, MARCELO SOUZA, RAISA TANOUE AND JOSHUA D. REISS

1 Centre for Digital Music, SEECS, Queen Mary University of London, London, UK
g.carvalhodurr@stu13@qmul.ac.uk ; l.meneguellipeixoto@qmul.ac.uk ;
m.soaresdesouza@stu13@qmul.ac.uk ; r.tanoue@stu13@qmul.ac.uk ;

joshua.reiss@qmul.ac.uk

Sound synthesis involves creating a desired sound using software or algorithms and analysing the digital signal
processing involved in the creation of the sound, rather than recording it. However, synthesis techniques are often too
computationally complex for use in many scenarios. This project aims to implement and assess sound synthesis models
with dynamic Level of Audio Detail (LOAD). The manipulations consist of modifying existing models to achieve a
more or less complex implementation while still retaining the perceptual characteristics of the sound. The models
implemented consist of sine waves, noise sources and filters that reproduce the desired sound, which could then be
enhanced or reduced to provide dynamic LOAD. These different levels were then analysed in the time-frequency
domain, and computational time and floating point operations were assessed as a function of the LOAD.

INTRODUCTION

Sound synthesis involves creating a desired sound using
software or algorithms, rather than recording it. One of
the most common and important applications is game
audio, where synthesized sounds take up less memory
than samples, are far less repetitive, and can be
manipulated in far more creative ways.
Traditionally, game audio has been performed using
samples of pre-recorded sounds. Early game consoles
and personal computers had synthesiser chips that
produced sound effects and music in real-time.
However, as sample technology matured it overtook
real-time synthesis because of its perceived realism [1].
While sample-based data requires most of the work and
decisions to be done in advance, prior to execution, real-
time sound synthesis is highly dynamic and flexible and
many decisions are postponed until runtime. Unlike
sampled sound, synthesised sound (and more generally,
procedural audio as opposed to data driven audio) has a
variable cost; the more complex the sound, the more
work it requires.
 A variable cost approach is well-established in
rendering computer graphics, especially in games. Level
of Detail (LOD) refers to the complexity of the
rendering of an object or scene. Frame rendering time
and memory utilization are improved in interactive
visualization using simpler representations of an object
[2]. Dynamic Level of Detail refers to the fact that the
detail in the rendering can change based on how close a
character is to whatever is being rendered.
In an early work [3], Clark discussed different
approaches to reduce computation cost when rendering
a scene and proposed an object hierarchy to represent a

scene in different levels of detail. He took into
consideration parameters such as how much space on
the screen the object occupies, the field of view of the
scene and whether or not the object or the viewer is
moving.
We are concerned with investigating, implementing and
testing an approach to dynamic Level of Audio Detail
(LOAD). That is, synthesizing a sound such that we can
choose how accurate and complex the synthesis is. By
providing a variable level of detail, a complex sound
scene can be synthesised with much less computation
and storage than would be required to deliver, process
and render a large number of samples.
Previous work approached the application of level of
audio detail by reducing computation in sample-based
spatialized rendering of sounds [4, 5] and using corpus-
based granular synthesis [6].
Tsingos et al [4] proposed a pipeline composed of four
steps for each time frame of audio processing. Firstly,
all sound sources are sorted based on their binaural
loudness. Perceptually inaudible sources that would be
masked by the combination of other sources are then
culled from the mix. A similar technique has been
proposed for multitrack audio production [7, 8]. In step
two, these remaining sources are then grouped into a
predetermined number of clusters and a representative
point source is created for each non-empty cluster. In
step three, an equivalent sound signal is generated for
each cluster and for each source, a number of operations
is applied to the audio data. Finally, the pre-mixed
signals and their representative point locations are used
to feed audio rendering hardware or be rendered in
software. The main limitation to this method is that it

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 2

performs well for a few hundred sound sources, but
cannot be scaled easily to the thousands.
In [5], Fouad et al propose that the real-time generation
of the sound environment respects a predetermined
computation time budget using buffers. They use three
factors (the listener’s gaze, the intensity of the sound
and the age of the sound) to prioritize the sound. The
higher the priority the more detailed the sound will be.
Once the buffers are filled the remaining samples that
are missing are found through interpolation.
Schwarz et al [6] proposed three levels of detail for a
scene, similar to our approach. However, their approach
seeks to bring sound and image together, making it
respond visually and sonically to a common stimulus
instead of triggering a sound effect from a visual event
or vice-versa, while our focus is only on synthesising
the sounds.
The paper is organised as follows. Section 1 provides an
analysis of sound synthesis engines and their
effectiveness in applying LOAD. Section 2 presents
how LOAD was applied to the chosen models. In
Section 3, we analyse the results of sound synthesis with
different models and different levels of LOAD. Section
4 describes a listening test that compared the perceived
realism of the models with varying LOAD against each
other and against recorded samples. Finally, Section 4
provides conclusions and a critical analysis, as well as
discussion of future research directions.

1 ANALYSIS

Using [1] as a guideline, we aim to reconstruct and
modify existing sound models to incorporate LOAD.
Models described in [1] have been enhanced or
extended previously by [9], [10] and [11], but to the best
of our knowledge, not for the purpose of providing
dynamic LOAD. The goal here is to have models close
enough to the original sound so that they still sound like
the effect being recreated but with less computation
required, and to analyze how complex it would be to
design an even more realistic model.
The models are studied regarding their components,
such as oscillating waves, filters and operations. Our
approach involves modifying frequencies, gains and
even incorporating new blocks of codes leading to a
better quality of sound as well as withdrawing some
parts to keep it realistic but less complex.
Table 1 summarizes the elements of each model in [1],
in order to categorize them in terms of the ease,
appropriateness and effectiveness of applying LOAD.
Not shown are those models that produce exactly the
sound to be modified (pedestrian crossing, phone tone,
DTMF tone, alarm…), where LOAD would most likely
not be applicable. This table was created so we could
analyze objectively the aspects of the models to
critically choose the best ones to work with. The criteria

of the choice was how difficult it would be to
implement LOAD and how satisfying the outcome
would be if we did.

2 IMPLEMENTATION

2.1 Model implementation

Based on the complexity of the models in Table 1, and
the potential effectiveness and ease of implementing
LOAD, three models were chosen for investigation: fire,
bubbles, and wind. Fire was implemented using
Simulink, a block diagram and model-based design tool
for Matlab, chosen because of its simplicity and broad
functionality. Also, performance tests such as
computational time, spectrogram visualisations, number
of operations and memory usage are easy to implement
with Matlab. Bubble and wind models were
implemented using PureData, an open source visual,
block-based programming language mainly used for
processing and generate sounds. It was chosen for these
models because it allowed direct extension and
adaptation of the code provided in [1].
Fire is a complex sound composed of many features.
The synthesis model is mostly white noise filtered to
achieve the right frequency levels. It is created after the
sum of three different sounds: lapping, crackling and
hissing. Although the sound of fire has more elements,
these represent the dominant components. Hence, its
implementation is made by generating all these features
separately and then adding them together.
For bubbles, we considered bubbles rising from
underwater until it reaches the surface where they pop
and ring. The pitch of the bubble sound depends on its
size; the larger the bubble the lower the sound. The
model is based on two different elements, each one with
a different envelope, pitch and amplitude of the bubbles.
They depend on the size and quantities of bubbles. Also,
different tones are used at the same time for the pitch as
there are many different bubbles flowing.
Like the fire model, wind is composed of a series of
features, such as a whistle, a howl, leaves moving, etc.
To emulate this, we used noise and filters that generated
pseudo-chaotic signals. Echo should appear since the
direction of the wind depends on the obstacles. Also the
air velocity should vary and that was obtained with low-
frequency noise. The band-pass filters were responsible
for providing the "whistle" while the wind through the
leaves was obtained clipping sinusoidal waves.

2.2 Applying Level of Audio Detail

Each of the models has its own implementation and
each generated sound has its own characteristics. So a
different approach to applying LOAD was implemented
for each model.

Table 1: Sound synthesis models from [1], their implementation, how LOAD might be applied, and the effect of applying LOAD.

Model Implementation How to Apply LOAD? Effect of LOAD

Police 2 oscillators + clipping + band
pass filter

Adding filter to simulate distortions of
diaphragm, delay to simulate buildings

Computation becomes more complex

Telephone
Bell

Few oscillators Increasing or decreasing number of
harmonics

Fire Combination of filtered white
noise

Adding more or less effects, besides
changing aspects of each effect

With each effect added more computation
required to generate the sound

Bubbles Sine wave generator + envelope
generator

Changing some constants; adding the
same model with different frequencies

Just changing a small detail

Running
Water

Noise modulation (AM & FM) Increasing or decreasing the number of
rising sine waves and/or changing the
parameters than it can sound like a
harder or a softer flow

It could change the quality of the sound &
switch between different kinds of running
water

Pouring “Bubbles” + “Running water” +
Band pass filters (resonance)

Adding more variation in bubble sounds
through adjustable number of filters

More computation because of the filters

Rain Waveshaping noise into
parabolic pulses

Change places drops fall; add coloured
noise; change frequencies, resonance,
threshold & amplitude; add sound of
running water & wind; fade unused
scenes as rain continues

More computation due to the different
environments

Electricity Mix of oscillators at close
frequencies modulating a chirp
impulse + short time comb filters
+ short impulses, noise &
resonant bank filter

By adding LOAD to the different
aspects that forms the sound, like
adding noise, filtering & modulation.

Thunder Noise sources + delays +
waveshaping + delay-based
echo/reverb

Reducing echo component of sound, do
not use polyphonic strike sound
generator as it can only be heard in
small distances from the thunder

Without echo, thunder would be less
realistic but it would reduce CPU
processing. Without polyphonic strike
generator thunder would not sound perfect
at short distances

Wind Noise & filters (Low-frequency
noise + amplitude-modulated
wideband noise + narrow band
pass filters)

Not using the subtle amplitude &
frequency modulation/ Not delaying the
excitations/Not use tree leaves sound

Without amplitude & frequency modulation
wind would have less realisticm whistling.
Without delay in excitations, stereo image
would not be so realistic. Tree leaves sound
not as good as described, so removing it is
not a problem. Sound elements present in
wind vary with ambience.

Switches Parallel band pass filters + short
delays + noise-like sources

Add some body resonance; Build more
abstractions to change the type of the
switch

More computation due to different switches

Clocks Controlled “switches” Adding more complexity to the control
code, simulating a big or small clock
body by adding delay & filtering.

More computation due to a more complex
control code

Motors Envelope generator + modulated
noise source + raised cosine
waveform

We could remove the noisy clicks, in
this case we would not use a modulated
noise source, decreasing CPU
processing.

The motor sound would be less realistic but
only when heard closely, the clicks can't be
heard in a greater distance.

Cars Phase splitting + wrapping +
delays + filters (+ timewarp the
waveguide + small noise)

Add inertia; Add timing & pulse width
jitter; Define a set of different
overtones; Set the controls differently

More computation when adding different
controls & inertia

Fans Noise source modulated with a
narrow pulse + mildly resonant

Add a parameter to alter the mix of
pulse, noise & Doppler shift, depending

Different sounds depending on observer's
angle as well as produce other static

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 4

band pass filter on the observer's angle. machinery sounds.

Jet Engine 5 oscillators (partial additive
synthesis) + cascade of filters &
nonlinear functions (noise
source)

Varying control input of filter for flame.
Adding more or less sinusoids to
simulate the turbine. Varying the
control input to simulate speed.

Helicopter Pulse generator & waveguide
(engine) + impulse generator, flat
amplitude noise source &
movable comb delay (main rotor)
+ fixed pulse generator & band
pass filter (tail rotor) + 3 sine
oscillators (gearbox) + steep low
pass filtered noise (distance
filter)

Change the model related to the
movement of the helice; Scale
components differently;

Simple changes since you just add the same
codes again or change scales based on the
model used.

Footsteps 2 polynomial GRF curve
generators + Noise filtered &
clipped (+ envelope)

Use less or not use synthesisers to
produce mixture of grass, soil, gravel or
any combination

The transitions across changing terrains
would not be too smooth. In the code it
would be enough to remove some parts.

Insects - Field cricket: synchronous AM
(source – one phasor)

Add context Computation will be needed, as the
environment needs to be set

 - Field cricket 2: pulse + high
resonance band pass filters

 - Cicada: filtered noise source
modulated with pulse wave

Birds Pulse waves + ring modulation
for FM carrier + two parallel
band pass filters

Birds are really complex animals, to be
more accurate it would require intricate
parameterisation of the syntax model

Really complex computation due to
quantity of variables

Mammals Pulse generators +
cascade/parallel resonant band
pass filters

A vocal tract model is essentially a set
of band-pass filters arranged to mimic
the changing diameter of a long
passage. Using less filters is a solution
to change the level of audio detail.

In the code it would be necessary to remove
some blocks. The effect on the sound
would be a lower quality

Guns Short sine sweep (higher pitch) +
short sweep at 100Hz + set of
series band pass filters + short
noise burst + envelope +
distortion

Controlling the shell chirp to vary the
form of the impulse. Adding more
aspects to the sound with more or less
filtering. Distortion can be applied too.
Changing control constants.

More computational resources are needed if
more aspects are added.

Explosions chirp impulse + shaped noise +
low-passed noise (+delays)

Changing the offsets Minor

Rocket
Launcher

Narrow band pass filters (tube
model) + comb-filtered noise
(rocket)

Unload empty tube behaves as a full
wavelength resonator that generates a
lot of harmonics. Using filters could
reduce amount of harmonics. Another
approach is to not use handling sounds.

The sound would have no significant
changes with the filters. Although
removing handling sounds would slightly
affect quality. is the code has enough detail
to add or remove parts.

Transporter Two-stage FM using triangle
waves + delays + envelope +
filter bank (10 parallel band pass
filters)

A simpler model can be made by adding
less sounds

Less computational resources will be
required as the model becomes simpler

R2D2 FM (or phase modulation)
synthesis

A simpler model can be made by adding
less sounds

Less computational resources will be
required as the model becomes simpler

Red Alert Sawtooth waveform + second
harmonic + envelope + fixed
delay-based resonators & sharp
filters

Adding more resonant factors &
changing constants.

The computational resources needed
changes as the complex of the sound
changes

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 5

For fire, all features were generated by filtering and
modulating white noise. Hence, adding more or less
filters to the feature models or changing the modulation
parameters was used to obtain dynamic Level of Audio
Detail (LOAD). The first approach significantly
affected the computational time needed to produce the
sound while the second one did not. Another way to
implement LOAD is to sum together two or more fire
sound sources, each one with all three features
implemented, and filter them in order to get different
resonant frequencies from each one. This improves
realism but increases computational time.
In the bubble model, the quantity of bubbles is
determined by a random number within a given range.
Our first approach to adding LOAD was to reduce or
increase this range by a simple change of parameters.
Our second approach was reducing the quantity of tones
used for bubble pitches. The sound with the highest
quality uses four different tones; in this case it has to
process the same function four times. Using less tones
slightly reduces the quality of the sound, but results in
less functions running simultaneously.
Since the wind sound is essentially different kinds of
noise modulated by filters that alter the direction and
velocity, to apply LOAD we added more noise
modulated in different ways to compose the ambience.
The noise wasn't randomly added; filters were applied
that would specifically create different elements, like
leaves moving, objects rolling etc.

3 EVALUATION

For each model, we applied three levels of LOAD, as
explained in Section 2.2. In Figure 1, spectrograms are
shown for low, medium and high LOAD fire sounds.
We can see that the more quality the sound has, the
denser the spectrogram. The small number of filters for
low LOAD generates a sound with frequencies in
almost every part of the spectrum. As more filters are
added, certain frequency ranges become emphasised,
until the high LOAD where it is possible to note the
cleaner sound.
Figure 2 depicts spectrograms of synthesised bubble
sounds for low, medium and high LOAD, respectively.
The spectrogram for the low level of audio detail has
less frequency components than the one representing the
sound with high level of detail. This occurs because the
worst quality sound has fewer tones generators. The
spectrogram for the midlevel LOAD should have the
same amount of frequency components as low LOAD
but it does not. This may have happened because the
size of each bubble is randomly generated, thus
influencing the frequency used. Also, bubbles are
produced with random variations in timing, which may
lead to the frequency content of bubbles adjacent in
time appearing smeared, thus resulting in overlapping
bubble tones in the spectrogram.

Figure 1: Spectograms of fire sounds for low (top), medium

(middle) and high (bottom) LOAD.

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 6

Figure 2: Spectograms of bubble sounds for low (top),

medium (middle) and high (bottom) LOAD.

In Figure 3, spectrograms are depicted for wind sounds
with varying LOAD. We can see significant differences
in the distribution of frequency content in each case.
The differences exist because the noise distribution
depends on LOAD. The higher quality sound has more
noise since in that case, the wind sound is generated
using a combination of noise sources and filters.

Figure 3: Spectogram of wind sounds for low (top), medium

(middle) and high (bottom) LOAD.

For objective measurement of computational
performance, the number of operations the program
performed and the computational time required to run
the code were determined. These tests were performed
on the fire model, implemented in Matlab Simulink,
because these quantities are more easily assessed in
Matlab than in PureData. Figure 4 shows similar

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 7

behaviour for both computational time and number of
operations. Both analyses are consistent with the
expected results, and suggest that considerable savings
can be achieved when low LOAD is used.

Figure 4: Computational time (top) and number of operations

(bottom) of the fire model for different levels of LOAD.

4 LISTENING TEST

A listening test was performed in order to evaluate if the
sounds synthesized by our modules were realistic and
how the different levels of LOAD would be perceived,
or if they would be perceived at all.
The test consisted of a multiple stimulus evaluation
using the Audio Perceptual Evaluation toolbox for
MATLAB [12]. Ten test subjects were chosen, and they
each had to answer three multi-stimulus questions. Each
question focused on one of the three sound types; fire,
bubbles and wind. In each question, the test subject was
asked to rate five audio samples in terms of how
realistic they sounded. Three of the samples were
created by our modules, which represented low,
medium and high LOAD configurations. The other two
samples were recordings of the actual sound. The
interface is shown in Figure 5 and the results are plotted
in Figure 6.
As expected, the recorded samples had the best mean
ratings in all cases, because our synthesis techniques did
not cover the whole range of complexity of each sound.
For fire sounds, low LOAD resulted in significantly
lower perceived realism. Though high LOAD was not
perceived to be more realistic than medium LOAD, both
medium and high LOAD fire sounds were close in
perceived realism to the first recorded sample.

Figure 5: User interface for the multi-stimulus perceptual
evaluation listening test.

3

Bubbles samples Ratings

3

Wind samples Ratings

3

Fire samples Ratings

2

2

2

4

4

4

5

5

5

0

20

40

60

80

100

1

R
at

e
s

0

20

40

60

80

100

120

1

R
at

e
s

10

20

30

40

50

60

70

80

90

100

1

R
at

e
s

Figure 6: Subjective ratings of fire (top), wind (middle) and

bubble (bottom) sounds. 1- low LOAD, 2- medium LOAD, 3–
high LOAD, 4– recorded sample 1, 5– recorded sample 2. The

box represents the 25-75% interquartile region, black lines
represent the range excluding outliers, and crosses represent

outliers.

Results were less conclusive for the other models,
however. All results for wind sounds had large variance
in ratings, resulting in an inability to distinguish
performance. Only the first recorded wind sound had

Durr, et al Implementation and evaluation of dynamic LOAD

AES 56th International Conference, London, UK, 2015 February 11–13 8

noticeable better perceived realism than other samples,
but the large range of ratings for this sample implies
that this result cannot be considered definitive. For the
bubble sounds, the model does not generate sufficient
complexity, and hence all synthesised samples were
rated very low in comparison to the recorded samples.
Hence, one cannot extract meaningful information
regarding the perceived realism of the synthesised
bubble sounds with varying LOAD.

5 CONCLUSIONS

In this work we sought to understand the mechanisms
for creating a sound with variable Level of Audio
Detail. We were able to create and manipulate three
sound models, apply varying LOAD on each of them,
and synthesise samples that in some cases have a level
of perception close to reality.
However, the results obtained in the listening test were
not satisfying. The different Levels of Audio Detail
were not ranked as expected. We suspect that this is due
to the oversimplicity of the synthesis models and the
challenging nature of performing an insightful listening
test.
For further work, LOAD should be implemented such
that LOAD has a continuum of values, and high LOAD
approaches the full level of realism of a recording of the
actual sound. Thus subjective evaluation could compare
the full spectrum from crude to highly realistic
synthesis. This would also allow thorough investigation
of how the dynamic aspects should be implemented
without perceptual artifacts being introduced as LOAD
changes.
One further challenge with the approach presented in
this paper was that each sound is synthesised using a
unique approach. Thus the implementation of LOAD
differs for each sound. An alternative would be to
explore how LOAD can be applied in a consistent
manner to a very general synthesis technique. For
example, if sounds are synthesised using an example
recording as a template, then a sinusoids plus noise
model might be applied, and LOAD can be directly
linked to the number of sinusoids in the synthesis,
regardless of the sound source.
In this paper, the subjective evaluation was only in the
form of comparison between the proposed models and
recorded samples. Better benchmarking, and more
accurate assessment of the state of the art, would be
achieved by including other synthesis techniques from
the literature for comparison. Only then would it
become clear how different approaches to sound
synthesis, with or without LOAD, compare to each
other.

REFERENCES

[1] Farnell, A., Designing Sound. MIT Press, 2010.

[2] Funkhouser, T., and Sequin, C. Adaptive Display
Algorithms for Interactive Frame Rates during
Visualization of Complex Virtual Environments.
Computer Graphics (SIGGRAPH), Los Angeles,
CA, 247–254, 1993.

[3] Clark, J. H., Hierarchical Geometric Models for
Visible Surface Algorithms. Communications of
the ACM, Oct. 1976 19 (10). P 547-554, 1976.

[4] Tsingos, N., et al Perceptual Audio Rendering of
Complex Virtual Environments. ACM
Transactions on Graphics (TOG), proceedings of
ACM SIGGRAPH, New York, NY, 249-258,
2004.

[5] Fouad, H., et al. Perceptually Based Scheduling
Algorithms for Real-time Synthesis of Complex
Sonic Environments. Proceedings of the 1997
International Conference on Auditory Display
(ICAD’97), Xerox Palo Alto Research Center,
Palo Alto, USA, 1997.

[6] Schwarz, D., et al. Sound Level of Detail in
Interactive Audiographic 3D Scenes.
Proceedings of the International Computer Music
Conference (ICMC), Huddersfield, UK, 2011.

[7] Kleczkowski, P., Selective Mixing of Sounds.
119th AES Convention, New York, Oct. 2005.

[8] Tsilfidis, A., et al, Hierarchical Perceptual
Mixing. 126th AES Convention, Munich,
Germany, May 2009.

[9] S. Hendry and J. D. Reiss, "Physical Modeling
and Synthesis of Motor Noise for Replication of
a Sound Effects Library," 129th AES
Convention, San Francisco, 2010

[10] C. Heinrichs and A. McPherson, "Mapping and
interaction strategies for performing
environmental sound," IEEE VR Workshop on
Sonic Interactions for Virtual Environments,
Minneapolis, USA, 2014

[11] C. Heinrichs, et al., "Human performance of
computational sound models for immersive
environments," The New Soundtrack Journal,
2014.

[12] B. De Man, J. D. Reiss, "APE: Audio Peceptual
Evaluation Toolbox for MATLAB," 136th Audio
Engineering Society Convention, Berlin, April,
2014.

